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RESONANCE BENDING WAVES IN A CYLINDRICAL SHELL UNDER A MOVING RADIAL LOAD 

N. I. Aleksandrova, I. A. Potashnikov, and M. V. Stepanenko UDC 539.3:534.1 

Analysis of axisymanetric wave processes in infinite cylindrical systems shows [i, 2] 
that critical velocities of motion exist inthe axial direction of the surface load that forms 
resonance perturbations. If the load velocity agrees with the "rod" velocity (c s = v~-~, 
longwave resonance of the longitudinal vibrations is realized. Another critical velocity 
corresponds to the medium-wave part of the spectrum and to the minimum of the dispersion curve 
of the first mode. 

The asymptotic of resonance wave growth in shells is obtained in [1-3] for comparatively 
large values of the time (t + ~). Applicability of the asymptotic solution for finite values 
of the time is investigated only for low-frequency longitudinal resonance processes [2, 4, 
5]. A bending resonance wave asymptotic is obtained below for a different kind of load and 
its applicability is clarified for quantitative estimates in systems of bounded length. The 
kind of load is determined for which the perturbations grow substantially more rapidly than 
in other cases. 

Formulation of the Problem 

Shell dynamics is described by the linear equations of classical Kirchhoff-Love theory: 

�9 " tt ! "" t ]~ 

u ---- u= + ~'w~, w = - -  ~u ~  - -  w - -  ~u'~ + Q / h ,  e = h 2 / t 2 ,  ( 1 )  

where u and w are the shell displacements in the axial x and radial directions; h is the shell 
thickness, and Q is the acting load. Taken as units of measurement are c = v/E/[p(l - vz)] 
the speed of sound in a thin plane (E is Young's modulus, ~ is the Poisson ratio), R is the 
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shell radius, and p is its density. The initial conditions are zero. Symmetry conditions 
(w x' = Wx"' = 0, u = 0) are satisfied in the x = 0 plane. 

Loads of two kinds are examined: a) over the shell surface along its axis a step normal 
pressure wave Q = H0(t)H0(c0t - Ixl) moves at the velocity c o [H0(z) is the Heaviside func- 
tion]; b) the pressure amplitude in the wave varies according to a sinusoidal law Q = H0(t). 
H0(c0t -- IX[)sin (q01x[ -- mot) (m0 = q0c0, q0 is the mode frequency). The situation when 
a local load oscillating at the frequency ~0: Q = H0(t)H1(x)sin~0t [Hi(z) is the Dirac func 
tion] is applied in the section x = 0 is investigated as a particular case. 

Applying the Laplace integral transform in t (symbol L, parameter p) and the Fourier 
integral transform in x (symbol F, parameter q) to (i), we obtain the solution in LF trans- 
forms: 

W LF =oLF p2+q2 uL F : QLF fVq 

h A(p,q)  ~ h A ( p , q ) '  ( 2 )  
A(p, q) = (p~ + q2)(l + e~ + p~) -- v~q ~ 

[A(p, q) is the dispersion operator of the system]. 

The equation A(p = iqc, q) = 0 describes the dependence of the phase velocity c on the 
wave number q (q = 2~/l, ~ is the wavelength). In particular, it has two roots for shells 

cl(q) = V h -  b, c2(q) = V a  q- b ( 3 )  

(a = ( i /2)(eq ~ q- q-~ + t ) ,  b = (1 /2) ] / r~q~ q_ q-2 __ t)~ + 4v~q-~). 

As is shown in [i], singular points on the phase curves in the q, c plane in which the 
phase and group (C= c + qdc/dq) velocities are equal determine the critical velocities of 
load motion that form resonance perturbations. The singular point of the first mode q, 
0, dc/dqlq=q, = 0 is investigated below, where the phase velocity reaches the absolute mini- 
mum c~.~. 

For v = 0, the dispersion operator degenerates into the product of two independent oper- 
ators corresponding to bending waves in a rod on an elastic base (with unit stiffness of the 
bedding coefficient) and longitudinal waves in the rod. We are interested in the first mode 
from which q. = (12/h2) I/4 and c. = (h2/3) I/4 follow. There are no analogous expressions 
in explicit form for shells; consequently, by expanding (3) in powers of h we find the ap- 
proximate expressions 

q,  ~ [ t2  (i -- v2)/h211/4~ c .  ~ [h 2 (1 -- V2)/3] 1/4. 

The originals are not determined successfully in explicit form from the solution of (2). 
We shall seek the perturbation asymptotic in the system for large times from the beginning 
of load action (t + ~) by using the method of inverting double integral transforms in the 
neighborhood of the ray x = c,t + q, proposed in [2]. The action is symmetrical relative 
to the plane x = 0; consequently, we henceforth examine the domain x e 0. 

Traveling Step Load 

For c o = c,, q = q,, we obtain the following asymptotic solution (t ~ ~): 

I --c 2 , ( t  1 ~/~ 
�9 ,) rdT, q 2 c ,  c 2 - -  c 2 \ ' - ~ ]  (F1 (• c o s  ~ l q ,  q -  F.~ (• sin ~lq,), 

, ( 2  ,) ~hqSc. _c2 _ c2 (F 2 (• cos ~]q. - -  F x (x) s in  ~]q.), 

1 dCl I 2 == C2(q$), (P = ~ ' - ~ /  q=q,, U = - -  ~] (q) t )  - 1 / 2 ,  I] = X--c,t~ 

oo ; ~ C")] 
F,  (• = ~:  dg = ] / / - 2  cos q-  s in --5-- k Cr ~- ' 

0 
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(graphs of the functions F I and F 2 are presented in [2], S and C are Fresnel integrals). If 
we speak about a rod on an elastic basis, then c 2 must be replaced by i and v by 0 in (4) 
and further. 

The asymptotic (4) agrees with that obtained in [2] to the accuracy of the misprints 
admitted there. It is seen that as the step load moves at the critical velocity c, a reso- 
nance process is formed in the system: the amplitude of the quasistationary envelope of the 
bending perturbations grows without limits as t I/2 as time elapses, the domain occupied by 
the perturbations expands also as t I/2, and the bending-wave carrier frequency equals q,. 

Traveling oscillating Load 

For c o = c, and q0 = q,, the asymptotic (t ~ ~) of the solution is found in the form 

+ Fa(• (• ~lq,] § ~ (~)1/2 (F2(• * + Fl(• ' 

u(x, t ,N--2~hq2.c.(v~_e2.)[t  [--sin,lq. (2 [1-~ 2 (& -- l) H, (-- '1)] + 

S Y )..dy. F~ (~r = f sin Uyy.~Sin g2 dg, Fa (~r = sin • cos 2 
0 0 

(5) 

The integral F3(• tends for large values of [• to • while F4(• tends to zero (Fig. i). 

Therefore, under the action of a sinusoidal load moving at the critical velocity c, and 
oscillating at the frequency q,, the amplitude of the bending perturbations envelope grows 
in proportion to t. This is more rapid than for the step load, and the growth can be explained 
by the presence in the load itself of the frequency q, of the form that corresponds to the 
resonance mode of the vibrations. 

If F3(~) is approximately replaced asymptotically by the equivalent function 

I(• = • -- 1• l) ~- (~/2)Ho( [• -- ~/2) sign ~r 
and the contribution of the functions FI, F2, and F4, which are asymptotically not essential 
as compared to F3(• is not taken into account, then we obtain an approximate estimate of 
the solution 

w (x,  t) 

u ( x ,  t)  ~ v s i n  ~lq, w (x ,  t) .  
q, (1 - d )  ~o~ ~ ,  

(6) 
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Hence it is seen that at a fixed point x the amplitude of the envelope of an oscillogram is 
proportional to x. 

L0.cal Oscillating Load 

Let us consider the dependence ~ = ~(q). Two branches exist in the m, q plane: coi,2 = 
qcl, 2. The point ~ = i of the curve ~2(q) is singular since here dm/dq = 0 [6]. Solutions 
valid for coo < m are represented below, where m constrains the perturbation spectrum (0, ~), 
acceptably being described by classical theory [2]. 

For m0 > i the asymptotic obtained (t + ~) has the form 

w(x, t) = wl(x, t) + w2(x, t), u(x ,  t) = u l (x ,  t) + u~(x, t), 

wl,~(x, t) ~ --(t/2)Wl,2{Pl(• cos (coot - -  qL~x) - -  
--P2(Xl,2) sin (coot - -  ql,2x)}, 

Ux, 2 (x, t) N - - ( t /2)UL2{pI(•  sin (coot - -  ql,2X) -{- 
-~ P2(Xl,2) COS (COO t - -  qL~x)}, 

~4 2 
p l ( > t ) =  l _ ~ _ [ C ( ~ ) - b  S ( - ~ . ) ] s l g n •  ' p 2 ( • 1 6 2  ( 7 )  

I - -  c~, 2 ( q l , 2 )  

W1,2 = 2hO)o~1, 2 2 2 ' (q~,~) [~,~ (q~,~)- ~,~ (q~,~)] 

U12 ~ _ , 2 2 
2h6%ql,2C1,2 (ql,2) [C2,1 (ql,2) - -  Cl,2 (ql,2)] 

C 1 , 2 - -  d~ (q) i dC1'2 [ 
dq , X,,2 = (C1,2(q1,2) t - -  x)((px,ut) -1/2, (PI,2 = 2 dq Iq=ql,~ 

(q~ and  q2 a r e  v a l u e s  o f  t h e  wave n u m b e r s  d e t e r m i n e d  by p o i n t s  o f  i n t e r s e c t i o n  o f  t h e  l i n e  
0J = co o w i t h  t h e  p h a s e  c u r v e s  co~ and  0~2). F o r  a r o d  on an  e l a s t i c  b a s i s  uz = u 2 = w 2 = 0.  

S t a r t i n g  w i t h  z - 1 ,  t h e  f u n c t i o n s  C ( z )  a nd  S ( z )  o s c i l l a t e  r e l a t i v e  t o  t h e  mean v a l u e  
0 . 5  and  a p p r o a c h  i t  a s  z g r o w s .  The m a x i m a l  d e v i a t i o n  f r o m  t h e  mean f o r  z z 1 l i e s  i n  t h e  
35% l i m i t .  T a k i n g  t h i s  i n t o  a c c o u n t ,  we f i n d  t h e  a p p r o x i m a t e  e s t i m a t e  w h i c h ,  a s  t -~ oo, w i l l  
be  more  e x a c t  t h e  f a r t h e r  t h e  p e r t u r b e d  d o m a i n  u n d e r  c o n s i d e r a t i o n  s t a n d s  o f f  f r o m  t h e  
q u a s i f r o n t :  

w~,~(x, t) ..~ --W~,2 cos (COot - -  ql,~X)Ho(C~,~(q~,~)t - -  x), 
(S )  ux,~(x, t) .~ - - U L :  sin (%t - -  q~,~x)Ho(Cl,,(q~,,)t - -  x). 

Expressions (8) have a more accessible form for analysis than does (7). It is seen that the 
perturbations in the shell consist of two waves: a bending wave is propagated at the velocity 
C I while a lon$itudinal "shell" wave initiated by bending perturbations moves ahead at the 
velocity C 2 m C I. The deflection in the longitudinal wave W 2 (the mean value) is at least 
an order of magnitude less than W I. Hence, there results that the fundamental perturbations 
in the shell can be computed on the basis of the model of a rod on an elastic basis. 

For coo = i the asymptotic (t + ~) is written as 

t3/4 
w (x, t) --~ 2~h%1/a {F~ (x0) cos t - -  F 6 (• s in t} -bWl(X, t), u(x, t )=  ul(x,  t), 

F 5 (x) = 1' cos zy sin y4 cos ~g (t - -  cos g~) y4 dy, F 6 ( •  = y ,  dy, (9) 
O 0 

t d3C2 I 
X o=x(q)o t )  -~/4, % =  24 @3 q=o" 

Graphs of the integrals Fs(~) and F6(~) are given in Fig. 2. 
totic (9) is converted to 

For the section x = 0 the asymp- 
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[F(z) is the3 ~gamma. function]. It is seen from (9) and (i0) that the perturbatlon" amplitude 
grows as t / in the neighborhood of x = 0 under the action of a local oscillating load with 
m0 = 1 and expands as t I/4. This result corresponds to the qualitative estimate [6]: reso- 
nance perturbations that grow in proportion to t I-I/n with time form in the system under a 
local strong monochromatic excitation with ~ = 1 and propagate along the axis at a decreasing 
velocity (n is the order of the first derivative dnm/dq n different from zero). In the case 
considered, n = 4. 

For m0 < i, the asymptotic (t + ~) for a shell corresponds to (7) and (8), where w 2 = 
u 2 = 0; for a rod on an elastic basis we obtain a solution in which the amplitude does not 
grow asymptotically with time and tends to zero with distance from the action site. 

Numerical Solutions 

In order to determine the limits of applicability of the asymptotic solutions found, the 
initial equations of motion are computed by a finite-difference method according to an explicit 
scheme. Numerical dispersion is minimized by selecting optimal mesh parameters for which 
the stability conditions are satisfied and the minimums of the phase velocities of the differ- 
ence and continual models are closest. As comparison of the phase curves shows, achievement 
of coincidence of the critical points (q,, c...) is possible only for T, 6 + 0 (T and 6 are 
mesh spacings in the time and the coordinate); consequently, values of q, and c, are taken 
from the difference dispersion relationships in the numerical computations. 

Results of numerical computations are represented in Figs. 3-6 for a rod on an elastic 
basis obtained for h = 0.05, t = 90, �9 = 6 = 0.05 (the maximal amplitude of the deflection 
is indicated in the upper left corner). According to the computations, the results for shells 
with the same parameters do not differ in practice from those represented. 

A graph of the deflection under the action of a step load traveling at the critical velo- 
city c, is given in Fig. 3, the dashed line is the static deflection w = Q/h = 20. Taking 
it into account, the difference between the numerical and analytic solutions decreases with 
time and is already not more than 2% for t = 120. It can be considered that the asymptotic 
(4) is practically exact starting with t = 30. 

A deflection diagram for a traveling sinusoidal load (q0 = q,, CG = C,) is shown in Fig. 
4. The resonance perturbation growth rate agrees with the asymptotic estimate (5), the dif- 
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ference in the maximal values of the amplitude is not more than 3% (t = 120). It is seen 
from an analysis of the perturbation oscillogram obtained numerically that the amplitude be- 
hind the front oscillates relative to the mean value w = q,x/4h determined from (6). 

Graphs of the deflection computed for a local oscillating load are represented in Figs. 
5 and 6. The numerical results are in good agreement with the analytic results: for ~0 < 
1 the perturbation amplitude does not grow with time; for ~0 = i (Fig. 5a is the diagram for 
t = 90 and b is the oscillogram at the point x = 0) the perturbation envelope in the neighbor- 
hood of x = 0 increases in proportion to t3/4; for m0 > 1 (Fig. 6, m 0 = v~ the perturbations 
propagate with an amplitude oscillating relative to the mean value (dashed line) that is 
found from (7). 

Comparing the numerical and analytic solutions describing bending resonance wave propa- 
gation in a cylindrical shell and a rod on an elastic basis shows that the asymptotics ob- 
tained determine, with good accuracy, the fundamental perturbations in a system formed after 
a finite time interval. 

The authors are grateful to L. I. Slepyan for useful discussions. 
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CALCULATION OF STRAINS FOR BRITTLE MATERIALS 

TAKING INTO ACCOUNT LIMITING FAILURE 

A. V. Talonov and B. M. Tulinov UDC 539.375 

In order to describe the strain properties of heterogeneous materials there is currently 
extensive use of a model for an elastic material weakened by a large number of cracks [1-9]. 

The aim of the present work is to construct a system of fundamental equations for com- 
puting the strain properties of brittle materials based on development of a model for a 
cracked material suggested in [3, 4, 9] taking account of crack growth during deformation. 

i. We consider development of an isolated shear crack. Shear crack propagation in a 
plane arrangement was studied in [6-8] where it was noted that during loading in the end zones 
of a shear crack separation cracks occur growing in the general case along a curvilinear tra- 
jectory. 

Experiments [8] show that curvature of a growing separation crack occurs directly ad- 
jacent to the end zone of a shear crack. Subsequently, independent of the direction for the 
plane of a shear crack growth of a separation crack occurs in a plane perpendicular to the 
direction of least compressive stress. 
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